Switching of Slow Magnetic Relaxation Dynamics in Mononuclear Dysprosium(III) Compounds with Charge Density.
نویسندگان
چکیده
The symmetry around a Dy ion is recognized to be a crucial parameter dictating magnetization relaxation dynamics. We prepared two similar square-antiprismatic complexes, [Dy(LOMe)2(H2O)2](PF6) (1) and Dy(LOMe)2(NO3) (2), where LOMe = [CpCo{P(O)(O(CH3))2}3], including either two neutral water molecules (1) or an anionic nitrate ligand (2). We demonstrated that in this case relaxation dynamics is dramatically affected by the introduction of a charged ligand, stabilizing the easy axis of magnetization along the nitrate direction. We also showed that the application of either a direct-current field or chemical dilution effectively stops quantum tunneling in the ground state of 2, thereby increasing the relaxation time by over 3 orders of magnitude at 3.5 K.
منابع مشابه
Chemical tuning of the magnetic relaxation in dysprosium(iii) mononuclear complexes.
A dysprosium(iii) complex, exhibiting slow relaxation of magnetization, was prepared. Crystallographic studies showed a perturbation of local symmetry upon deprotonation of the ligand, with concomitant faster relaxation of magnetization. This was attributed to a large shift in the direction of the main magnetic axis, as indicated by ab initio calculations.
متن کاملAn NCN-pincer ligand dysprosium single-ion magnet showing magnetic relaxation via the second excited state
Single-molecule magnets are compounds that exhibit magnetic bistability purely of molecular origin. The control of anisotropy and suppression of quantum tunneling to obtain a comprehensive picture of the relaxation pathway manifold, is of utmost importance with the ultimate goal of slowing the relaxation dynamics within single-molecule magnets to facilitate their potential applications. Combine...
متن کاملA nine-coordinated dysprosium(III) compound with an oxalate-bridged dysprosium(III) layer exhibiting two slow magnetic relaxation processes.
A 2D oxalate-bridged dysprosium(III) compound, formulated as [Dy(C2O4)1.5(H2O)3]n·2nH2O (1), has been hydrothermally isolated. As for compound 1, structural analysis reveals that the nine-coordinated Dy(III) ions reside in a slightly distorted tricapped trigonal prism. Under an applied magnetic field of 700 Oe, the compound was magnetically characterized as a new example that two slow relaxatio...
متن کاملSlow magnetic relaxation in tris(diphosphanylamido) and tetra(phosphanoamido) dysprosium complexes.
Two homoleptic phosphanylamido dysprosium complexes [Li(THF)4][(Ph2PNPh)4Dy] and [Dy{N(PPh2)2}3] have been synthesized. Both have a highly symmetric arrangement of the ligand which is only slightly broken in the solid state by steric and packing effects as a result of the weak coordination of phosphorus atoms to the metal centre. Magnetic properties of these two compounds are similar with both ...
متن کاملHomochiral mononuclear Dy-Schiff base complexes showing field-induced double magnetic relaxation processes.
A pair of enantiopure mononuclear dysprosium/salen-type complexes (Et3NH)[Dy((R,R)/(S,S)-3-NO2salcy)2] (/), where 3-NO2salcyH2 represents N,N'-(1,2-cyclohexanediylethylene)bis(3-nitrosalicylideneiminato), are reported. The enantiomer contains two crystallographically independent dysprosium(iii) ions, each chelated by two enantiopure 3-NO2salcy(2-) ligands forming a [DyN4O4] core. Detailed magne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 55 11 شماره
صفحات -
تاریخ انتشار 2016